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Executive Summary  
Integrated Corridor Management (ICM) systems offer the potential to manage both travel demand and 
network demand in normal and abnormal conditions. Through increased awareness, decision-support, 
and institutional coordination, ICM systems strive to change the traditional reactive model of traffic 
management to a proactive approach. With ICM, system operators take action before corridor 
performance degrades and, in cases where degradation has already occurred, take action to promptly 
restore normal conditions. Traditionally, ICM is typically applied in an urban setting where multiple 
transportation modes are readily available. NCDOT has applied ICM principles, but in more rural 
applications where less modal and network options are likely to exist. These initiatives will provide 
potential opportunities to measure benefits and provide guidance for future implementation of ICM 
elsewhere in the state. 

NCDOT has deployed ICM on 22 miles of I-85 from MM 10 to 32 near Charlotte with a focus on managing 
incident-related congestion on the interstate and parallel US-74 arterial. This deployment includes 
traveler information on Dynamic Message Signs, activatable detour trailblazer signs for individual 
incidents, and incident-specific signal timing plans for intersections included in the detours. 

The goal of this research project is to support the I-85 ICM deployment with data collection and 
monitoring as well as develop an analysis framework for Before and After analysis. Due to impacts to 
NCDOT budgets and COVID-19 traffic, the I-85 ICM activation occurred later than planned and the analysis 
framework can be applied in a future effort to evaluate the system impacts. 

Observations of traffic flow patterns are essential to accurately capture the traffic diverted due to ICM 
activations. In this project, Bluetooth and Wi-Fi traffic monitoring devices were placed throughout the 
corridor and used to match trips along the primary and detour routes to establish baseline O-D patterns 
which can be compared to ICM activations after implementation. 

This project also adapted an existing sketch-planning NCDOT analysis method used in the project 
prioritization process to compare estimated delays on primary and detour routes during ICM operation. 
This analysis then uses incident rates and time of day traffic patterns to estimate the total delay with 
and without ICM operation to estimate the benefit of ICM. The inputs for diversion rates and capacity 
benefits from ICM-specific signal timing can be updated as observations provide better estimates. 

This project developed a live dashboard integrating data feeds from public and private sources presented 
in a compact set of maps and graphs. NCDOT performs after action reviews of severe incidents including 
those in the I-85 ICM deployment, which may use the dashboard to supplement their review. Reviewing 
the probe data provides a view of the experienced travel time for drivers remaining on the primary route 
and those detouring, while GPS data may indicate when diversion may utilize other routes when following 
third party device recommendations. 

Finally, this project developed an evaluation framework which captures delay, safety, environmental, 
administrative, and capital impacts of ICM deployment. For both benefits and costs, it is important to 
separate the incremental or specific impacts of the ICM deployment with the understanding that other 
projects and background traffic patterns continue to affect the corridor. This analysis framework is 
recommended for the I-85 deployment and others with fixed strategies; however it would need to be 
augmented with the strategy selection algorithm to account for a dynamic system.  
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 Introduction  
Integrated Corridor Management (ICM) systems offer the potential to manage both travel demand and 
network demand in normal and abnormal conditions. Through increased awareness, decision-support, 
and institutional coordination, ICM systems strive to change the traditional reactive model of traffic 
management to a proactive approach. With ICM, system operators take action before corridor 
performance degrades and, in cases where degradation has already occurred, take action to promptly 
restore normal conditions. 

Traditionally, ICM is typically applied in an urban setting where multiple transportation modes are readily 
available. NCDOT has applied ICM principles, but in more rural applications where less modal and network 
options are likely to exist. These initiatives will provide potential opportunities to measure benefits and 
provide guidance for future implementation of ICM elsewhere in the state. 

Actively managing the corridor from a transportation operator’s perspective implies an awareness of all 
the routes and the ability to accept, adjust, and deploy advisory and control strategies which can affect 
the entire system. From a traveler’s standpoint, ICM offers enhanced travel options including the ability 
to dynamically shift transportation options based on actionable information provided on traffic and road 
conditions. 

NCDOT has deployed ICM on 22 miles of I-85 from MM 10 to 32 near Charlotte with a focus on managing 
incident-related congestion on the interstate and parallel US-74 arterial. This deployment includes 
traveler information on Dynamic Message Signs, activatable detour trailblazer signs for individual 
incidents, and incident-specific signal timing plans for intersections included in the detours. 

The goal of this research project is to support the I-85 ICM deployment with data collection and 
monitoring as well as develop an analysis framework for Before and After analysis. Due to impacts to 
NCDOT budgets and COVID-19 traffic, the I-85 ICM activation occurred later than planned and the analysis 
framework can be applied in a future effort to evaluate the system impacts. The objectives of the project 
are: 

1. Collect travel data from existing and novel sources to capture the traffic trends and incident 
impacts. 

2. Develop a monitoring online dashboard which can be used to review data after incidents. 
3. Develop a planning-level estimation tool for ICM deployments. 
4. Develop an analysis framework for a Before and After study of ICM deployments. 

The report is laid out in four distinct sections.  First, background literature on the subject of ICM 
deployments, detour route selection, capacity estimation, and information dissemination are provided.  
Second, the research team’s data collection and monitoring tools are described.  Third, the analysis 
method is provided and case studies are run using the planning method described.  Last, 
recommendations and lessons learned are recorded for future deployments. 

 

  



 

 

 Literature Review  
Integrated Corridor Management (ICM) is defined as the coordination of transportation operations to 
improve travel management. The concept of ICM was introduced by USDOT in 2006 to mitigate the 
problem of congestion (1), with many states now implementing ICM strategies to combat traffic issues 
during non-recurrent congestion.  This section provides an overview of ICM in four areas: implementation 
of ICM, selection of detour routes, capacity estimation, and techniques for dissemination of information 
to the traveling public.   

2.1. ICM Implementation 
As part of USDOT’s introduction of ICM in 2016, three pioneer sites in Texas, Minnesota, and California 
were selected for analysis, modeling, and simulation of various response strategies, with only two going 
to actual implementation - US-75 in Dallas, TX and I-15 in San Diego, CA (1). The objectives set for ICM in 
the three initial test sites were to make use of the right modelling software, ensure that the modelling 
tools meet the analysis needs, to validate the potential benefits, develop new strategies based on trends 
and collaborate among ICM’s public and private sector champions. The major performance measures that 
were utilized to quantify the benefits of ICM were safety, mobility, reliability and emission savings.  The 
initial results from modeling and simulation showed promising trends, with 12.6% and 11.8% 
improvements in travel time reliability in San Diego and Minneapolis, respectively. Based on the 
simulation modeling analysis, it was determined that for successful ICM implementation, three important 
considerations must be accounted for: 1) enhancing capabilities necessary for modelling multimodal 
assignments, 2) reliable data collection is necessary to accurately project what is likely to happen when 
traffic is diverted, and 3) modelling of possible incidents is necessary rather than just the typical day.   

Petrella presented the findings from ICM traveler behavior surveys deployed in the US-75 corridor in 
Dallas (2). The set of panel surveys included the use of “baseline” and “endline” surveys for general drivers 
and “pulse” surveys for traveler’s use of travel information during incidents. License plate capture 
methodology was used to sample the drivers with 3% response rate for drivers and 22% response rate for 
transit users. It was observed that during incidents, use of Google Maps as a navigational aid increased 
rapidly with an increase in minor route usage for afternoon peak trips. A key finding from the baseline 
and endline surveys is that the drivers were more satisfied with the predictability of their trip time. 

As part of the Domestic Scan program under NCHRP 20-68B, a scan team visited five locations across the 
U.S. to review existing and planned ICM programs to help accelerate beneficial innovation by facilitating 
information sharing and technology exchange among the states and other agencies (17).  The following 
five locations were chosen for the review: New York/New Jersey/Pennsylvania, Dallas, Minneapolis, 
Phoenix, and San Diego. In developing an ICM, the scan team proposed the use of a five-step process-
focused model considering factors such as coordinated operations, multi-agency data sharing, traveler 
information, and a decision support system. Shown in Figure 1, an ICM Capacity Maturity Model (CMM) 
was developed which shows evolutionary processes designed to compare a corridor agency’s existing ICM 
maturity to a fully mature system (3). 



 

 

 
Figure 1.  ICM Capability Maturity Model, or CMM (16) 

 

2.2. Selection of Detour Routes 
In 2005, commuting drivers in Brisbane, Australia were surveyed to determine commuter route choice 
behavior in response to traveler information systems.  To observe drivers’ compliance to recommended 
detour routes, Dia and Panwai used survey responses to develop agent-based neural network models (4). 
The results from this modeling effort clearly indicated that “prescriptive, predictive, and quantitative real-
time delay information” were most effective in influencing driver behavior to change routes.  Similarly, 
through surveys of automobile commuters in downtown Chicago, Khattak et. al. determined that, on 
average, 60% of the travelers are willing to adopt a detour route if they perceive over time that the 
information provided is timely and accurate (5).  

Liu et al. developed a generalized ICM diversion control model for freeway incident management capable 
of concurrently optimizing detour rates and arterial signal timings over multiple roadway segments 
between the freeway and the detour (6). The major objective of this model was to maximize the utilization 
of available corridors while not significantly increasing the total time spent by travelers on the detour 
route to ensure their compliance to routing guidance. The model also accounts for more complex 
operational challenges such as having multiple detour routes. Models were tested on a stretch along the 
westbound I-94 corridor from Milwaukee to Waukesha.  Data were collected using various sources such 
as vehicle tracking with bluetooth sensors, traffic data from Wavetronix, a database of crashes, automatic 
traffic recorder stations, and tube counters. The parameters used for the model calibration are maximum 
and minimum cycle lengths, minimal green time, intergreen time for phases, maximum percentage of 
traffic that can diverge from the freeway to arterial, genetic algorithm population size, maximum number 
of generations, crossover probability, mutation probability, length of projection stage in rolling time 
horizon, and length of control intervals. It was observed that it was capable of determining proper time 
and control points for detour operation. Also, it was found to be consistent with variable driver behavior 
as it outperformed other similar models. 



 

 

Kopelias et. al. developed a practical algorithm for selection of the most appropriate detour route in case 
of freeway closure by the means of a “Route Efficiency Index”, or REI (7). The REI was calibrated on the 
basis of opinions of experts and an analytic hierarchy process with parameters safety, cost, and 
environment. Each parameter is scored and REI calculated using weights for every performance measure. 
Last, the REI was calibrated for three conditions: a) peak hour without traffic management, b) peak hour 
with traffic management, and c) off-peak hour. The team concluded that the safety parameter was the 
primary criterion for establishing detours over cost and environment.  They also developed a decision 
matrix to guide the users on selecting the best detour in the event of an incident. 

Smith et. al. developed and introduced a new algorithm to design detour routes using an extension of the 
open-source tool Simulation of Urban Mobility, or SUMO, which takes into consideration real time 
updates from the consequence of an accident (8). The study considered three locations to evaluate 
various parameters of the re-routing algorithm in this tool.  After running extensive testing on the effects 
of collisions on travel time, the proposed algorithm was able to drive the overall increase in travel time 
down by as much as 35%.  

Rather than using just incident duration and lane blocking in the decision model process, Liu et. al 
considered other factors such as the observed traffic conditions, time-of-day, day-of-week, and the 
number of lane blockages to develop the detour decision model (9).  The decision model was developed 
to replicate real world scenarios within a confidence level of 95%, which in turn allowed the research team 
to justify if there was truly a need for detour operation or not. The model calculates the probability value 
(p) using a utility function depending on the parameters listed above and only implemented when the 
probability is greater than or equal to 0.5.  

In 2006, FHWA published Alternate Route Handbook which defined the alternate routes and how traffic 
agencies can implement them in different areas (10). FHWA defined an alternate route as a route which 
provides additional capacity to service primary route traffic and classified them into the following four 
different categories: Metropolitan-Freeway, Metropolitan-Street, Urban/Rural-Freeway, and Urban/ 
Rural-Street. The handbook defines the alternate route planning process into three steps which are 
Alternate route selection, Alternate route plan development, and traffic management planning. The flow 
chart for the process was summed up in the handbook and is shown in Figure 2.  Figure 3 consists of the 
barriers to developing alternate route plans and ranks them from largest to smallest. 



 

 

 
Figure 2.  Flow chart of the FHWA alternate route planning process (9) 



 

 

 
Figure 3.  Barriers to developing alternate route plans (9) 

 

2.3. Capacity Estimation of Freeways 
In 2005, Chang et. al. conducted an evaluation of Maryland Department of Transportation’s incident 
management program “Coordinated Highway Action Response Team”, or CHART.  This evaluation looked 
to assess the efficiency of CHART and the potential resulting benefits based on incident operations records 
(11). Detection, response, and recovery were the three key aspects considered for evaluating efficiency. 
The incident data were collected and distributed based on roads, blockage duration, peak and off-peak 
hours, weekday and weekend, lane blockage, and location.  In estimating capacity reduction on the 
freeway network for detour route planning purposes, it was observed that average lane closures per 
incident were 2 (including shoulder closures).  Not completely unexpected, it was observed that 88% of 
incidents took place on weekdays; however, unexpectedly approximately 64% of incidents took place 
during off-peak hours. To help with non-recurrent congestion, the research team recommended studying 
the traffic demand patterns carefully and establishing links with incident features such as day-of-week, 
time-of-day, and duration.  

In 1987, Jeffrey Lindley set out to evaluate the fraction of capacity available when freeway incidents 
take place (12, 13). Data such as average speed and maximum service flow were collected from the 
Highway Performance Monitoring Systems (HMPS) database and was programmed using FORTRAN IV to 
yield several parameters including capacity reduction factors by lane for several freeway scenarios. The 
fraction of freeway section capacity available under incidents for varying facility types is summarized in 
Table 1. 

  



 

 

Table 1.  Fraction of freeway capacity available during incidents on various freeway facility (11) 

No of lanes in 
each direction 

Shoulder 
Disablement 

Shoulder 
Accident 

One Lane 
blocked 

Two lanes 
blocked 

Three lanes 
blocked 

2 0.95 0.81 0.35 0 0 

3 0.99 0.83 0.49 0.17 0 

4 0.99 0.85 0.58 0.25 0.13 

5 0.99 0.87 0.65 0.40 0.20 

6 0.99 0.89 0.71 0.50 0.25 

7 0.99 0.91 0.75 0.57 0.36 

8 0.99 0.93 0.78 0.63 0.41 

 

2.4. Techniques for Dissemination of Incident Information  
When informing about detour operations to travelers, different tools can be utilized such as dynamic 
message signs (DMS), highway advisory radio (HAR), commercial radio television, GPS in-vehicle 
navigation, and E511 service.  As a commuter, one or more of tools can be adopted based on its purpose, 
informing travelers during the actual trip or for pre-trip planning.  In a 2016 study by Robert Gordon found 
that the use of DMS and GPS in-vehicle navigation were the most efficient amongst all other methods 
(14). Related to the dissemination method, Srinivas et. al. determined the probability of diversion along a 
detour route based on message content. It was observed that the maximum diversion probability was 
0.89 when the message contained location of incident, expected delay, and best detour strategy.  Table 2 
shows more detail on probability of diversion based on other message content evaluated (15). 

Table 2.  Probability of diversion based on message content (14) 

Message 
Strength 

Message Content Probability of 
diversion 

1 Occurrence of accident 0.20 

2 Location of the accident 0.19 

3 Expected delay 0.32 

4 The best detour strategy 0.37 

5 Location of the accident and the best detour strategy 0.67 

6 Location of the accident and the expected delay 0.75 

7 Expected delay and the best detour strategy 0.80 

8 Location of accident, expected delay and the best detour 
strategy 

0.89 



 

 

 

The FHWA developed a process of coordinating the resources of different partner agencies and private 
sector companies to detect, respond to, and clear traffic incidents as quickly as possible (16). This program 
was called the Traffic Incident Management System and consisted of eight major disciplines for the core 
constituency: fire and rescue, emergency medical, transportation, towing and recovery, hazardous 
material remediation, public safety, communications, and traffic reporting. The main objectives of the 
system were to protect on-scene responders and the traveling public, reduce the incident delays for the 
travelers, avoid secondary accidents, and ensure that response resources tied up at incidents are put back 
into service quickly. The program noted that the necessary aspects of an effective and efficient TIMS are 
on-scene operations, communications and technical coordination, and program and institutional 
coordination.   

Funded by FHWA, Jiaqi et. al. also developed the Traffic Incident Management Benefit-Cost (TIM-BC) tool, 
a comprehensive benefit-cost estimation software to evaluate the performance of various TIM strategies. 
The tool estimates the costs related to incidents on highways using factors such as number of lanes closed, 
amount of time taken for responders to arrive, etc. The algorithm is based on a database of five tables 
containing information on travel delays, heavy vehicle percentage, average wages for drivers, operators, 
and sectors contributing in cost as well as a set of multiple regression equations for travel delay and fuel 
consumption. TIM-BC takes into consideration the eight most effective strategies which are safety service 
patrols, driver removal laws, authority removal laws, shared quick-clearance goals, pre-established towing 
service agreements, dispatch allocation, TIM task forces and Strategic Highway Research Program training 
(17). 

Last, a 2002 paper by Pal and Sinha found that freeway service patrols can help significantly reduce 
incident clearance time, allowing freeways to return more quickly to normal operations and reduce the 
potential for secondary crashes (18). As part of their research, a simulation model was developed for 
practitioners designing a new patrol program configuration or looking to improve operations of an existing 
program.  The simulation software, named “Hoosier Helper”, has four major modules: incident 
generation, traffic simulation, simulation of incident response, and estimation of system performance 
measures. The simulation software evaluated five common service patrol policies listed below: 

1.  Policy A: First reached first served without crossing to the other side 
2.  Policy B: First reached first served with crossing to the other side 
3.  Policy C: Most severe first 
4.  Policy D: Most severe with minimum time to respond first with vehicle patrolling 
5.  Policy E: Most severe with minimum time to respond first with a vehicle waiting on the shoulder 

The results from the simulation model revealed that the best way to operate freeway service patrols was 
to use policy E. 

 

  



 

 

 Monitoring and Data Collection 

3.1. Facility/Route Descriptions  
The ICM facility includes Interstate 85 and the US 74 arterial west of Charlotte, NC. The two facilities run 
parallel to each other. On the west side, the site starts at the boundary of the city of Kings Mountain, runs 
through the city of Gastonia, and ends at the vicinity of Charlotte Douglas International Airport. The I-85 
study area begins east of Billy Graham Parkway (Exit 33) and extends west of US 74 (Exit 10), containing 
15 interchanges along the interstate. NCDOT Division 12 owns and operates all signals along US 74 west 
of Catawba River, and the City of Charlotte DOT operates the signals to the east. 

A two-lane drop exists along I-85 between Exit 26 and Exit 27. The multi-lane reduction compounded with 
the presence of a ramp merge in the proximity leads to excessive congestion and backups on I-85 each 
afternoon in the PM peak. The queue quickly backs up and extends to I-485 on a typical weekday. 

This section of the I-85 experiences a sufficient number of incidents every week, making it a prime 
candidate for such programs. The area around Belmont on I-85 experiences an average of three crashes 
per week. Crashes occurring on I-85 Southbound can cause backups extending to Billy Graham Parkway, 
forcing traffic to get to US 74 from Billy Graham Parkway. Furthermore, the impacts of sun glare along I-
85 in the McAdenville area causes congestion and incidents in the morning rush hour heading NB in the 
AM peak hour.  

The alternative route for the corridor, US 74, runs parallel to the main route and has 88 signalized 
intersections throughout the study area. The use of the alternative routes depends on the triggers and 
the associated locations of the triggers. Twelve operational scenarios were developed to detour the traffic 
from I-85 to the US-74 in case of incidents along the freeway.  Figure 4 shows a schematic drawing of the 
site.   

 

 
Figure 4.  ICM Corridor along I-85 and US-74 



 

 

The major stakeholders for the ICM initiative include Metrolina, NCDOT (Divisions 10 and 12, ITS and COST 
Units), city of Gastonia (police, fire-rescue, and engineering), Charlotte DOT, city of Belmont (police and 
fire-rescue), State Highway Patrol, IMAP, and the FHWA. 

In addition to utilizing the available intelligent transportation systems (ITS) infrastructure, the ICM project 
involved deploying several devices that would enable implementing the new ICM strategies. The data 
collection efforts assess current transportation network conditions and recommend pre-approved 
response plans when events or incidents affect corridor operations. The response plans are location-
specific and include specific scenarios based on both the location and severity of the incidents. 

3.2. Data Description  
 Clearguide 

The probe vehicle data provider for this project was Iteris’ Clearguide. Clearguide analyzes transportation 
data obtained through their partners and produces (near) real-time and historical visualizations that can 
be used to pinpoint problem areas and assess the performance of a system using such metrics as signal 
performance measures, arterial performance measures, and highway performance measures. 

The ICM project used Clearguide’s two suites of products – contour maps and freeway/arterial travel 
times. Contour maps were used to investigate traffic levels at a macro level. This service proved an 
indispensable tool for assessing traffic levels post Covid-19 pandemic and helped the research team better 
understand the traffic patterns along the corridor. Furthermore, Clearguide travel time was used as a 
validation tool for incidents along the corridor, third-party travel time providers for comparison with 
Bluetooth and Google travel times, and was used in the estimation of vehicle hours of delay.    

 Bluetooth  
Bluetooth units provided three of the most important datasets in this project. These sensors are capable 
of providing ground truth travel time, origin-destination information, and diversion rate estimation. The 
following paragraphs provide details of travel time estimation and the outlier detection procedure.  

Each Bluetooth sensor unit records one line/record of data for each detection of a Bluetooth device in its 
vicinity. This record includes a timestamp of the detection, a partial media access control (MAC) address 
identifying the device, and the received signal strength indicator (RSSI). As a device passes the sensor unit, 
it is typically detected many times. All individual detections are written to a file as separate records. There 
are two main steps in distilling the raw Bluetooth device detections into travel time records: converting 
the individual Bluetooth detections into single-time records and matching those records based on their 
MAC address. Both steps are automated through the use of the vendor’s dashboard, BlueMac Analytics.  

While most of the travel times were representative of the traffic stream, some trips were deemed to be 
outliers induced by intermediate stops or exiting and re-entering the freeway and had to be flagged as 
such. A simple non-parametric statistical filter known as IQR4 was used to screen for outlier travel times 
by the software package employed for the generation of travel times from Bluetooth devices. This 
statistical filter flags as an outlier any travel time record that is three or more standard deviations away 
from the mean of the thirty most adjacent travel time records. To approximate the standard deviation, 
the IQR4 filter uses the interquartile range (the difference between the 25th and 75th percentile readings) 
as an estimate of 0.75 times the standard deviation. This inter-quartile range is then multiplied by four to 



 

 

arrive at the screening buffer value approximately equal to three standard deviations. The procedure 
results in valid individual driver travel times that can be used to generate driver-specific travel time 
distributions under different traffic and roadway conditions.   

While IQR4 was found to be robust for freeway travel time outlier detection, its results were questionable 
for arterials. As such, a new outlier detection algorithm was introduced that would effectively flag non-
representative arterial travel times. The newly developed algorithm uses information such as speed limit, 
number of traffic signals, cycle length, minimum green and red phase length.  

Valid individual travel times obtained through this process can shape the origin-destination matrix 
between sensors and estimate the diversion rate for scenarios where incidents are present on the 
freeway. The latter is achieved by comparing sensor match rates for the day and time when the incident 
is present to a similar day when the incident is not present.   

 Twitter 
Live incident data on the ICM corridor is gathered through the Twitter API by listening to NCDOT's Tweets. 
These Tweets include the incident's timestamp, roadway, mile marker, city, incident type, and number of 
lanes closed. A back-end script in Python automates this task of listening to NCDOT's tweets, and the script 
is running 24/7 with the collected data saved in the project SQL database.   

 Google Maps 
Upon detection of an incident in NCDOT’s tweet, the back-end script connects with Google Maps API and 
requests two items: detour routing information and travel time for the detour. While NCDOT’s ICM will 
provide detour information to travelers, not all drivers will divert as instructed by the signs. Some may be 
using third-party apps such as Google Maps and rely on the detour information provided by them. The 
detour route and travel time information are crucial data points in determining the diversion rate. 

 TIMS 
Incident data were acquired from NCDOT’s Traveler Information Management System (TIMS). This system 
logs incident information on the types of events that most often cause delays on the highway systems and 
include major accidents, construction or maintenance projects, and natural disasters. The TIMS database 
contains incident attributes such as road name, direction, mile marker, start and end time, severity, 
number of closed lanes, coordinates, and many more. The acquired incident log is filtered temporally and 
spatially using the reported start times and mile markers. Furthermore, incidents with extremely long 
durations (hundreds of days), negative duration, and those not identified as incidents in the HCM were 
flagged as outliers and excluded from the analysis dataset. 

3.3. Dashboard 
 ICM Dashboard Description 

The Integrated Corridor Management (ICM) Dashboard is a web-based data visualization tool that visually 
tracks, analyzes, and displays traffic incident data at a section of the I-85 corridor in North Carolina. The 
dashboard is aimed at providing information to engineers and researchers on the impact of individual 
incidents and can be used as an additional data source for after action reviews. It is a web-based platform 
developed using JavaScript as the primary language (Node.js interpreter) and MySQL database. The ICM 



 

 

Dashboard is hosted at ITRE’s DataLab on secure state-networked servers. Further details on the 
dashboard and its uses are documented in the user guide in Appendix A. 

 

Figure 5.  ICM Dashboard Example 
 

The ICM Dashboard incorporates travel time data from two primary sources and collects NCDOT Traffic 
Incident Management System (TIMS) data for each incident on the facility. The first source is Google Maps 
API data indicating the routing and travel time directions provided at regular intervals through the incident 
period. The routing for Google Maps may change throughout the incident, so multiple routes are 
designated using color codes for the map and graph. NCDOT uses HERE probe travel times available 
through the ClearGuide website and these are stored through API access in the dashboard. The HERE 
travel times are requested for the mainline and detour routes pre-planned under the ICM deployment 
and are not dynamic, however for bidirectional incidents both directions of mainline and detour routes 
are shown on the map and graph. 



 

 

 ICM Dashboard Example: One Lane Closure 
On February 17, 2020 a vehicle crash closed one lane of I-85 SB at MM 23. The incident (TIMS ID: 584492) 
was reported to begin around 8:30 AM and end around 10:50 AM. It is important to note that due to the 
dynamic nature of the incremental collection of API data that the incident end times are not as precise 
and should be confirmed using the TIMS database record if exact times are needed. The Google Map in 
Figure 6 shows three routes were recommended on that platform, while the travel time graph in Figure 7 
shows that the mainline route (red) was rapidly increasing in travel time before arterial detours were 
recommended. Throughout the incident, there were time periods that the mainline route was again 
recommended, as each dot on this graph indicates a single routing request response.  

The green detour route was briefly recommended, which does use a portion of the planned detour under 
the ICM program. As the Google Maps routes are dynamically calculated, it was observed in many 
incidents with detours that had similar travel times to the mainline route that the recommendations 
would often switch back and forth between the mainline and detour. 

 

Figure 6.  ICM Dashboard Example Google Map 
 



 

 

 

Figure 7.  ICM Dashboard Example Google Travel Times 
 

While the Google data is collected only during the reported incident period, probe data from HERE is 
collected throughout every day through the ClearGuide API for the planned mainline and detour route. 
These planned routes are defined into scenarios based on the location of the incident, with MM 23 on I-
85 SB contained in Scenario 9. The mainline and detour routes are shown in Figure 8 mainly utilizing US-
74 to bypass the incident. Figure 9 shows the travel times for 30 minutes in advance of and after the 
reported incident. In this case, the incident start and end times cleanly line up with the time periods that 
the mainline travel time consistently exceeds then recovers below the detour travel time. While the 
Google Maps travel time graph can only show one route’s travel time per time period, both the mainline 
and detour travel times are collected and reported throughout the incident from the probe data.  

While this example incident occurred prior to the deployment of the ICM system, even analysis of “before” 
data can be instructive in understanding the dynamics of the transportation system in the corridor. The 
two sources provide unique perspectives, where the Google Maps API can demonstrate the volatility in 
“ideal” route selection as well as potentially what travelers may get from other sources than NCDOT DMS, 
while the probe data can clearly show when and how much benefit travelers may receive by utilizing the 
detour route if and when detours are recommended. 

  



 

 

 

Figure 8.  ICM Dashboard Example Probe Map 
 

 

Figure 9.  ICM Dashboard Example Probe Travel Times 
  



 

 

 I-85 Before Analysis 

4.1. Data 
The data sources for the before analysis include the ClearGuide data that provides the travel times for all 
routes and the incident data from TIMS. The primary, detour, and non-incident travel times are found for 
each incident and merged with other features like incident type, condition name, duration of the incident, 
expected impact, time-of-day, and day-of-week. Vehicle hours of delay (VHD) is calculated using the 80th 
percentile of the non-incident travel time as baseline and multiplying this excess delay with the vehicle 
volumes of each route, as shown below. 

1. Estimating traffic volumes 

𝑉𝑉𝑡𝑡,𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠 ∗ 𝐾𝐾𝑡𝑡,𝑠𝑠𝑠𝑠 ∗ 𝐴𝐴𝐷𝐷𝑡𝑡 

where, 

Dsc  = Directional Distribution 
DMt = Daily Multiplier to convert AADT to ADT 
Kt,sc = Hourly volume factor for the time-of-day, day-of-week, and peaking pattern 
Vt,sc = Time-of-day estimated hourly volume on scenario 
 

2. Estimating excess incident delay 

𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡,𝑖𝑖,𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝑖𝑖,𝑠𝑠𝑠𝑠 − 80𝑡𝑡ℎ𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑁𝑁𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠  

where, 

PTTi,sc  = Primary Travel Time for incident i 
NTTsc = Non-incident base line travel time for that scenario 

 
3. Vehicle hours of delay (VHD) 

𝑉𝑉𝑉𝑉𝐴𝐴𝑖𝑖 = �𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡,𝑖𝑖,𝑠𝑠𝑠𝑠 ∗ 𝑉𝑉𝑡𝑡,𝑠𝑠𝑠𝑠

𝑇𝑇

𝑡𝑡=0

 

4.2. Delay Methodology 
The data was divided into training and test sets. The model was trained on the training set and the 
prediction accuracy of the model was tested on the test data set. Both linear and non-linear models were 
studied and the models with the most accurate predictions were selected. 

 Linear Model 
A linear model was created using Numerical Features to predict VHD. The model was then tested for 
linearity assumptions which are described below. 

• Linearity of Residuals: The Q-Q plot shows that the residuals are only approximately normal. 



 

 

 
Figure 10.  Linearity of residuals 

 
• Constant variance of error terms: The funnel shape shows the presence of heteroskedasticity. 

 
Figure 11.  Constant variance of error terms 

 
• Correlation of Residuals: A p-value was calculated and since it is less than 0.05, we rejected the 

null hypothesis that the consecutive errors are not correlated, meaning errors are not 
independent. 

• Normality of residuals: A histogram was created and the residuals were found to be only 
approximately normal. 
 

 
Figure 12.  Normality of residuals 



 

 

The results of the diagnostics indicated that the model violates the linearity assumptions.  Since the 
numerical features are found to be highly correlated and the uncorrelated features in the dataset are 
categorical, non-linear models were explored. 

 Non-Linear Model 
Three models, namely Multivariate Adaptive Regression Splines, Gradient Boost, and a Neural Network 
model, were tested for predicting VHD. The results were compared on the basis of root mean squares 
error (RMSE) and symmetric mean absolute percentage error (SMAPE).  A description of each model is 
provided below for reference followed by a summary of results. 

1.  Multivariate Adaptive Regression Splines (MARS).  MARS is an adaptive procedure for 
regression, and is well suited for high-dimensional problems (i.e., a large number of inputs). It 
can be viewed as a generalization of stepwise linear regression or a modification of the CART 
method to improve the latter's performance in the regression setting (Friedman et al., 2001). 
Due to the nature of the dataset, a degree of 3 is used for building the MARS model. 

2.  Gradient Boosting.  Gradient boosting is a machine learning technique which produces a 
prediction model in the form of an ensemble of weak prediction models, typically decision trees. 
It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes 
them by allowing optimization of an arbitrary differentiable loss function. We use the gradient 
boosting decision tree algorithm “XGboost” for our analysis. 

3.  Neural Network Model.  A neural network is a two-stage regression or classification model, 
typically represented by a network diagram (Friedman et al., 2001). The network consists of 
three hidden layers which implement a rectified linear unit (ReLU) activation function. The 
model uses the Adam optimizer to minimize the mean squared error for training the neural 
network. 

 Results and Discussion 
VHD was estimated using the three models – MARS, Gradient Boosting and Neural Network. The data was 
divided into training and test sets. The model is trained and then tested for prediction accuracy using the 
test set on the basis of RMSE and SMAPE values. Table 3 shows the results of the analysis. 

Table 3.  RMSE and SMAPE values for 3 non-linear models 
Model RMSE SMAPE 

MARS 63555 1.09 
Gradient Boosting 52809 1.06 
Neural Network 51989 1.27 

 
 
The RMSE obtained from the Neural Network model is the lowest on the test dataset.  However, this value 
fluctuates every time the model is run. This indicates that the data samples are not identically distributed 
and there is a lot of unexplained variance. The RMSE obtained from the Gradient Boosting model is 
comparable to the Neural Network and the value of SMAPE is lowest among all three models. Since the 
Neural Network model is a “black-box” model, it makes it difficult to infer the effect of the features on 
the response variable. In that aspect, the Gradient Boosting model may be preferable. However, Figure 
13 shows that the MSE of the test data set decreases with the increasing number of training periods of 



 

 

the Neural Network. Hence, with greater computational power, we may be able to reduce the MSE even 
further by increasing the number of epochs in the Neural Network. 

 
Figure 13.  Decrease in mean squared error over epochs 

 

The results from the above sections clearly indicate the lack of variables that can explain the variance in 
VHD.  A consistent pattern observed from these models is that no matter how much we increase the 
flexibility (capacity) of the model, the RMSE remains high. The features that have been investigated need 
to be improved to explain the VHD more accurately. Future work needs to focus on deriving more efficient 
features that are the cause for incidents. Another approach that can be tried is bucketing the VHD into 
different classes and using classification algorithms to classify the categories of VHD given the features. 
This could help to get more accurate results of the range of possible VHD for a given scenario and can be 
further narrowed if additional information about the incidents if available. 

4.3. Origin-Destination Methodology 
 Setup/Placement of Bluetooth Sensors 

The study site employed 30 commercial Bluetooth sensors. The focus was to have at least one sensor at 
each endpoint of a given ICM scenario and place intermittent sensors along the detour routes to have 
reserved option for detection of traffic taking the detour in case they are missed by the first sensor on the 
facilities.  The Bluetooth sensors used were seventh-generation BlueMAC units, manufactured by Digiwest 
LLC.  

Units were installed on different NCDOT available infrastructure such as gantry poles located in the wide 
median on Interstate 85, signs, and other available roadside posts.  Figure 14 shows the approximate 
location of majority of the devices deployed in this project. 

 



 

 

 
Figure 14.  Location of deployed Bluetooth sensors 
 

Figure 15 shows the basic elements of the Bluetooth sensor deployment used at the study sites.  The 
rectangular unit is the main operating structure, housing one 12V 12Ah battery, a GSM mobile radio, the 
Bluetooth (both high and low energy) radio, WiFi radio and antenna proper, and a solar charging assembly.  
The solar charging panel is mounted on the front of this top unit and is adjusted in the field for maximum 
efficiency.  The unit is mounted to an existing pole or other available infrastructure using metal brackets 
and straps as shown. 

 

 
Figure 15.  Example of Bluetooth sensor installation 

 

 Bluetooth Data Pre-Processing 
Data pre-processing related to the Bluetooth tasks for this project was divided into two parts: the pre-
processing of data necessary to obtain true travel times for the study sites and outlier detection to 
segregate valid travel times from the invalid travel times.  

 Travel Time Generation 
For the duration of each study, each Bluetooth sensor unit recorded one line/record of raw data for each 
detection of a Bluetooth device in its vicinity.  This record includes the date and time of the detection, a 
partial media access control (MAC) address identifying the device, and the received signal strength 
indication (RSSI).  As a device passes by the sensor unit, it is typically detected many times. All of the 
individual detections are written to file as separate records, and uploaded to the server nightly. 

There are three main steps in distilling the raw Bluetooth device detections into travel time records: 
converting the individual Bluetooth detections into single-time records, matching those records based on 



 

 

MAC address, and removing the outliers. The first two steps are the same for both the primary route 
(freeways) and the detour routes (arterials). A Matlab script was developed to take care of these two 
steps. 

 Outlier Detection 
4.3.2.2.1. Freeway Outlier Detection 

For freeway outlier detection, the research team used a simple statistical filter to screen for “outlier” 
travel times, which is referred to as IQR4.  Any travel time record that is three or more standard deviations 
away from the mean of the thirty most adjacent travel time records is flagged as an outlier travel time.  
As noted later, there are many possible reasons for outlying travel times, from unexpected vehicle 
departure from the facility and subsequent re-entry to vehicle speed significantly lower than the traffic 
stream.  To approximate the standard deviation, the IQR4 filter uses the inter-quartile range (the 
difference between the 25th and 75th percentile readings) as an estimate of 0.75 times the standard 
deviation, which is near what such value would be on a truly normal distribution.  This inter-quartile range 
is then multiplied by four (thus resulting in the name IQR4) to arrive at the buffer value equal to three 
standard deviations used in screening. 

4.3.2.2.2. Arterial Outlier Detection 

Although IQR4 is a robust method for detecting outliers on freeways and arterials, it does not do a good 
job where number of detections are low (low traffic volume) and/or a significant percentage of vehicles 
exit and re-enter the roadway. In situations like these, fixed thresholds should be used for the ceiling and 
floor values. In an arterial sitting, the value of ceiling and floor depend on these characteristics of the 
arterial: free flow travel time, cycle lengths, minimum green, queue clearance time at downstream 
intersection, free flow speed (speed limit) and distance between intersections. Following two equations 
show the relationship of ceiling and floor values to these characteristics. 

𝐶𝐶 = 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝑟𝑟 +  ∑ �𝐶𝐶𝑖𝑖 − 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� +  𝐴𝐴𝑞𝑞𝑠𝑠𝑞𝑞𝑖𝑖+1𝑛𝑛
𝑖𝑖=0 , 

𝐹𝐹 =  
𝐴𝐴

𝐹𝐹𝐹𝐹𝐹𝐹 + 9
 

where, 

C  = ceiling value 
FFTTr = free flow travel time 
Ci  = cycle length for intersection i  
Gimin  = minimum green for intersection i 
Tqcli+1  = time to clear the initial queue at the downstream intersection  
F = floor value 
D  = distance between the two intersections 
FFS  = free flow speed or speed limit 
 

 



 

 

 Case Studies 
To test the robustness of the developed methods for outlier detection both for the main and detour 
routes, and estimation of detour percentage, the team selected two scenarios where both incident and 
non-incident days were available. Selection of routes to include incident and non-incident days were 
deemed crucial for testing of the outlier detection algorithms and analysis of the detour rate to ensure 
they work under both incident and non-incident scenarios. Two sites were selected with different ramp 
and signalized intersections density. The first case study is located along the west side of the ICM facility 
from exit 10A to exit 13, while the second case study is located in the middle of the facility and runs from 
exit 21 to exit 22.  The analysis and results can be found in Appendix B. 

Application of the developed algorithms for outlier detection to both incident and non-incident periods 
revealed robustness of the methodology. Both the freeway and arterial outlier travel time detection 
methods were able to flag travel times not representative of traffic stream. The flagged travel times were 
removed from analysis. The resulting travel times can be used for travel time, origin-destination, and 
diversion rate analysis. The latter analysis was conducted on the second study site. The findings show 
promising results conducting this type of analysis using Bluetooth sensors.  

4.4. Sketch-Planning Method 
 Planning Tool Description 

The research team developed a tool to generate incident scenarios in freeways and analyze the impact 
of using specific detour routes. The core delay methodology utilizes NCDOT’s CALC methodology used in 
the Prioritization process, which provides a sketch-planning estimate of travel time and delay using the 
HCM methodology. This methodology is repeated for each scenario, made up of an incident condition 
and time of day. Four incident severities have been modelled for in this analysis: Shoulder closure, 1 
lane closure, 2 lane closure, and 3 lane closure. The final outcome of the analysis is an estimate of the 
expected savings in vehicle-hours due to the use of ICM and detour routes. Savings are estimated for a 
set of scenarios defined by the time of day and severity of incident. The total expected savings is the 
sum of each scenario’s Vehicle Hours Traveled (VHT) saved and the probability of that scenario 
occurring. 

𝐸𝐸𝑚𝑚𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸 𝐹𝐹𝑚𝑚𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆 =  �𝑉𝑉𝑉𝑉𝐴𝐴 𝐹𝐹𝑚𝑚𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑘𝑘 ∗ 𝑚𝑚𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

 Scenario VHT 
1. First, an individual scenario is defined with a given time of day and incident condition (Shoulder, 

1, 2 or 3 lanes closed). 
2. Time-of-day is used to estimate the percentage of AADT in the facility. Table 4 shows the 

percentage of AADT in the facility throughout the day for both AM and PM peaking facilities. 
This distribution should be updated with facility-specific distributions if available. 

 



 

 

Table 4.  Percentage of AADT for different times-of-day 

Time AM    
PEAK 

PM   
PEAK  Time AM   

PEAK 
PM    

PEAK 

12:00 AM 0.007 0.008  12:00 PM 0.054 0.057 

1:00 AM 0.005 0.005  1:00 PM 0.055 0.060 

2:00 AM 0.004 0.005  2:00 PM 0.057 0.066 

3:00 AM 0.005 0.005  3:00 PM 0.061 0.075 

4:00 AM 0.008 0.008  4:00 PM 0.066 0.083 

5:00 AM 0.022 0.017  5:00 PM 0.071 0.084 

6:00 AM 0.060 0.040  6:00 PM 0.056 0.063 

7:00 AM 0.092 0.062  7:00 PM 0.039 0.045 

8:00 AM 0.082 0.059  8:00 PM 0.031 0.035 

9:00 AM 0.061 0.053  9:00 PM 0.026 0.029 

10:00 AM 0.052 0.052  10:00 PM 0.020 0.021 

11:00 AM 0.052 0.055  11:00 PM 0.014 0.015 

 
3. Next, the average travel time (ATT) per vehicle, in hours, is computed for both the freeway and 

detour facility with and without ICM using the input AADTs. ATT is calculated using the CALC 
methodology also used in NCDOT’s Prioritization process for each roadway type. This 
methodology is only adjusted in that the volume on the mainline and arterial are affected by the 
amount of diverted traffic and adjustments to capacity based on incident severity and the effect 
of signal retiming on the detour route. 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑒𝑒𝑜𝑜𝑓𝑓 𝐴𝐴𝐴𝐴 ∗ 𝐶𝐶𝐹𝐹  

where,  

ATT  = average travel time 
FFTT = free flow travel time, computed based on the project length and speed limit 
CF  = congestion factor, calculated as a function of the v/c ratio  

 
A partial view of the lookup table for the CF function is shown in Table 5. The congestion factor 
is capped at a value of 5.0. 
 



 

 

4. Next, vehicle hours traveled is calculated as 

𝑉𝑉𝑉𝑉𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 𝑝𝑝𝑡𝑡𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴  

where,  

VHT = vehicle hours traveled 
AADT = average annual daily traffic 
ATT  = average travel time 

 
The VHT is calculated for each of the four conditions 
below. 
 

a) Incident Mainline VHT without diversion 
b) Incident Mainline VHT with volume diversion to 

detour 
c) Incident Detour VHT with volume diversion to 

detour 

The VHT savings for an incident scenario can then be 
calculated using the formula 

𝑉𝑉𝑉𝑉𝐴𝐴 𝐹𝐹𝑚𝑚𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆 = [𝑚𝑚 − (𝑏𝑏 + 𝑒𝑒)] ∗
𝐸𝐸𝑑𝑑𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

60
 

 

 

 Scenario Probability 
The first step is to calculate the frequency of all incidents for the freeway segment. The frequency of 
all incidents is the product of the incident rate and the VMT for the freeway. The incident rate can be 
calculated as the ratio of the crash rate to the crash to incident ratio. The default value taken for the 
crash to incident ratio is 4.9. The crash rate for a freeway segment is calculated using the crash 
prediction model incorporated in the HERS team for urban freeways developed by Richard Margiotta 
(19). The following fifth order polynomial used to calculate the crash frequency is provided below. 

 

where,  

ACR  = the ratio of AADT to the capacity of the freeway 
LW  = lane width of the freeway. 
 

Table 5.  Partial look-up table for 
congestion factor (CF) 



 

 

4.  Incident scenarios are generated for each incident type for every hour during the day. The 
duration for each of these incidents is estimated using a random variable with an inverse normal 
distribution, the mean and standard deviation of which are listed in Table 6. The values have 
been referred from the HERS safety model assessment for urban freeways. 

Table 6.  Probabilities, average, and standard deviation for duration of each closure type 

Severity Probability of 
incident severity 

Average Standard deviation Median 

Shoulder closed 0.754 34 15.1 36.5 

1 Lane Closure 0.196 34.6 13.8 32.6 

2 Lane Closure 0.031 53.6 13.9 60.1 

3 Lane Closure 0.019 69.6 21.9 67.9 

 
5.  In the next step, the probability for each incident scenario is computed by considering the 

incident severity type and the time-of-day of the incident. Table 6Table 4 contains the 
probability for each incident severity. This final scenario probability is the likelihood of any given 
incident both occurring at this time based on demand and being the specific severity. 

 

 Expected Savings 
As described in the introduction, the expected savings for an incident severity type can be taken as the 
VHT savings that can be expected for an incident at any hour of the day. To calculate the expected savings 
for each incident severity type, the sum product of VHT savings × Probability for each of the incident 
severity throughout a day is taken. 

 Assumptions and Case Study 
In order to complete the analysis, the following factors were assumed and can be updated to be facility-
specific or new state-wide defaults may be created as data become available. 

1. The percentage of volume diverted taken for each incident severity is listed in Table 7 for a four-
lane cross-section. As no diversion conditions have yet been observed these are simple 
assumptions that should be updated as data become available. 



 

 

Table 7.  Percent of mainline volume diverted to detour for each closure type 

 

2. The increase in capacity for signalized intersection in the detour route is taken as 20%. This 
value indicates how much additional capacity is available due to ICM-specific timing plans for 
the detour route but does not account for additional delay that side streets may experience. 

3. The directional factor for the freeway facility is defaulted as 0.55. This value should be facility 
specific when available. 

4. The default crash to incident rate is taken as 4.9. This indicates the average number of incidents 
per one reported crash. This value may be updated with a local factor when available. 

The team also conducted a case study in the tool for the I-85 NB freeway in Charlotte, NC. The facility has 
been broken into six individual segments with six alternate routes that were proposed. The VHT savings 
for the each of these detours have been estimated using the planning tool. The facility information was 
obtained from various sources such as NCDOT AADT and Google Maps. The Detour information is detailed 
in Appendix C. The final estimates of the expected savings have been documented in Table 8, below. The 
trend across incident types is that for one lane closures, the detour route has enough capacity to provide 
substantial benefits to the network while two lane closures congest the freeway and detour and leave less 
room for benefits. One limitation is that the CALC method used for VHT calculation does not incorporate 
queue length, so benefits to quicker queue clearance under the two lane closure condition cannot be 
estimated. 

Table 8.  Calculated expected savings for I-85N detours 

Sc
en

ar
io

 
 

I-85 
Detours 
(Exits) 

 

Expected Savings per Incident (in hrs) 

Shoulder 
closed 

1 
Lane        

Closed 

2 
Lanes 
Closed 

3 
Lanes 
Closed 

1 10A - 13 409 30,998 1,397 #N/A 

2 13 -17 1,039 81,125 5,096 #N/A 

3 17 - 21 1,156 318,252 20,953 #N/A 

4 21-27 6,125 285,008 28,899 #N/A 

5 27-30 33,503 3,062,752 200,789 #N/A 

6 30 - 33 2,580 347,037 41,064 #N/A 

 

 

Incident severity Percentage of mainline traffic diverted to detour 

Shoulder Closure 5 

1 lane closure 10 

2 lane closure 15 

3 lane closure 20 



 

 

4.5. Before and After Analysis Framework  
The before and after analysis framework below is intended to be used once sufficient after data are 
available for evaluation. It is recommended that at least 100 incidents are included in the analysis for 
each period to account for potentially large variation between incidents however statistical tests may 
show significant results at smaller sample sizes if the results are more consistent. The framework is 
designed for an operational-level analysis rather than planning-level meaning empirical incident details, 
travel times and routing data are needed. 

 Incident Impact Performance Measures 
Incident Severity is the maximum impact to travel lanes at the incident location, and may vary by 
roadway direction in cases where incidents affect both travel directions. Incidents often have varying 
impacts to travel lanes as responders arrive and clear the roadway, and this timeline may be considered 
during review of individual incidents however it is difficult to incorporate directly into an analysis of all 
incidents together. 

Excess Incident Delay (EID) is delay incurred during incidents beyond the recurring level of congestion for 
a certain time of day. This accounts for the incremental impact of incidents rather than Travel Delay 
which is based only on speed limit travel time. Times of day with no recurring congestion calculate EID 
beyond speed limit travel time. The Recurring Congestion Baseline accounts for this recurring level of 
congestion in non-incident days at that time of day. Figure 16 shows an example of how EID can be 
visually interpreted. 

𝑅𝑅𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆 𝐶𝐶𝑜𝑜𝑒𝑒𝑆𝑆𝑒𝑒𝑆𝑆𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒 𝐵𝐵𝑚𝑚𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝐶𝐶𝐵𝐵𝑡𝑡𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑁𝑁𝑜𝑜𝑒𝑒 − 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 80𝑒𝑒ℎ 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑒𝑒𝑚𝑚𝑆𝑆𝑒𝑒𝑒𝑒 𝐴𝐴𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡𝑟𝑟
𝐹𝐹𝑝𝑝𝑒𝑒𝑒𝑒𝐸𝐸 𝐿𝐿𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒 𝐴𝐴𝑒𝑒𝑚𝑚𝑆𝑆𝑒𝑒𝑒𝑒 𝐴𝐴𝑒𝑒𝑚𝑚𝑒𝑒𝑟𝑟
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where, 

t  = Time of day/Day of week  
r  = Route C  = ceiling value 
 

𝐸𝐸𝑚𝑚𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑒𝑒𝑒𝑒𝑚𝑚𝐷𝐷 (𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡𝑖𝑖𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐴𝐴𝐴𝐴𝑡𝑡𝑖𝑖𝑟𝑟 − 𝑅𝑅𝐶𝐶𝐵𝐵𝑡𝑡𝑟𝑟
0 � 

where, 

i  = Unique incident identifier 



 

 

 

Figure 16.  Illustrative example of Excess Incident Delay 
 

 

As EID is calculated on per vehicle basis for each time period, volumes must be assigned to each time 
period. Volume distributions indicating the percent of daily traffic traveling at each time period of the 
day may be estimated or observed using sensors on the facility. The following estimation equation can 
be used in the absence of raw counts: 

𝑉𝑉𝑒𝑒𝑒𝑒 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒 ∗ 𝐴𝐴𝑒𝑒 ∗ 𝐾𝐾𝑒𝑒𝑒𝑒 ∗ 𝐴𝐴𝐷𝐷𝑒𝑒 

where, 

Vtr  = Time of Day estimated Hourly Volume on Route 
AADTr  = the average annual daily traffic volume on route  
Dr  = Directional Distribution (assume 0.5 or use local value) 
Ktr  = Hourly Volume Factor for Time of Day, Day of Week and Peaking Pattern 
DMt  = Daily Multiplier to convert AADT to ADT 

Hourly vehicle volume distributions shown in  
Figure 17 are incorporated from the 2019 TTI Urban Mobility Report (Source:  
https://mobility.tamu.edu/umr/). Daily Multipliers, found in Table 9, adjust AADT to ADT for a specific 
day of the week, which were obtained from NCDOT’s Traffic Survey Unit. 

https://mobility.tamu.edu/umr/


 

 

 
Figure 17.  Hourly Vehicle Volume Distributions by Functional Classification, Day of 
Week, and Peaking Pattern 

 
Table 9.  Daily Multipliers to Adjust AADT to ADT 

Day of Week Daily Multiplier 
Monday – Thursday 1.05 

Friday 1.1 
Saturday 0.9 
Sunday 0.8 

 

The equation below can be used to calculate Incident Vehicle Hours of Delay for a given incident. 
Incidents are tracked beyond the recorded start and end time to account for potential delays in incident 
identification at the TMC or queue discharge. 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝑉𝑉𝑉𝑉𝐴𝐴𝑖𝑖𝑟𝑟 = �𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡𝑖𝑖𝑟𝑟 ∗ 𝑉𝑉𝑡𝑡𝑟𝑟

𝑇𝑇

𝑡𝑡=0

 

 

where: t varies from incident start of incident (t=0) to the end of the incident at t=T, with T 
being the total impact duration plus 30 minutes Before and after. 

Diversion Percentage is the average percent of mainline traffic that diverted onto the detour route 
during the incident. The goal of the ICM deployment is to manage traffic flows such that the diverted 



 

 

traffic reduces the mainline congestion while still benefiting from the detour route travel times. This 
may be estimated through the matching method described in 4.3 or other methods of O-D analysis. 

 Benefit-Cost Analysis 
The Benefit-Cost Analysis (BCA) includes the following benefits and costs which can be aggregated to net 
benefits or a Benefit-Cost Ratio. The analysis should also note any unmeasured or unrecorded benefits 
or costs which can be used to contextualize the findings. Often many institutional benefits are unable to 
be measured, especially for pilot deployments of new operational strategies. 

 Benefits 
Travel Time and Delay Savings is calculated from the total reduction in vehicle-hours of excess delay. 
This excess delay is an estimate of only the incident-specific delay and accounts for recurring congestion 
expected on that day of week and time of day. In the case of incidents occurring in the after period, the 
excess incident delay must be calculated for both the mainline route and detour route, weighted by the 
diversion rate. Analysis should use a vehicle class weighted value of time (VOT) to estimate the user cost 
of delay with an average vehicle occupancy assumption.  

Secondary Incidents are defined as incidents that occur in the vicinity of an active incident. These may be 
due to unexpected queues on the freeway or drivers distracted by the incident and/or responders. 
Based on a review of incident duration and frequency changes, an average reduction of secondary 
incidents in total is estimated. Additionally, NCDOT has estimated that incident management may 
reduce the severity of the remaining secondary incidents with an average of 9% reduction in fatal and 
severe injury crashes. For all incidents, the additional delay savings can be monetized as user cost, and 
the crashes will be monetized according to EPDO crash costs NCDOT uses based on severity. 

Fuel Savings may be estimated utilizing the NCDOT methodology developed in NCDOT Research Project 
2013-09. It utilizes the average price of gasoline and diesel over the analysis period, and estimates fuel 
consumption tied to the delay savings of the project.  

Emission Savings may be estimated utilizing NCDOT’s emission methodology used in CMAQ evaluation 
for speed improvement project types in urban counties. The CMAQ methodology estimates savings in 
NOx, VOC and CO based on speed improvements and idle time reduction. 

 Costs 
Construction and Deployment Costs include the construction of DMS and dynamic trailblazer signs as 
well as infrastructure upgrades that can be solely attributed to the deployment. If planned infrastructure 
upgrades occurred in tandem with the deployment, a justifiable percentage of these costs may be 
attributed to the ICM project. 

Administrative and Operation Costs should include TMC staffing and salary costs of NCDOT staff needed 
to operate the ICM program. Similarly, these costs should be apportioned at a justifiable percentage of 
the total based on the portion of effort attributable solely to the ICM program. These costs should also 
reflect a long-term recurring cost rather than an initial higher effort that may be needed for a first pilot 
deployment such that the costs can be used to estimate future project costs.  



 

 

 Recommendations and Conclusions 
Origin-Destination Data Collection 

Observations of traffic flow patterns are essential to accurately capture the traffic diverted due to ICM 
activations. In this project, Bluetooth and Wi-Fi traffic monitoring devices were placed throughout the 
corridor and used to match trips along the primary and detour routes. Field tests should be performed 
to test the actual performance of the Bluetooth sensor. Particularly, tests should be done to study 
whether the performance (e.g., detection range, detection rate) can be affected by terrain, traffic 
density, and distance of the Bluetooth devices to the roadway. Improper placement can result in 
matching trips from the incorrect roadway and lead to errors in estimating the amount of diverted 
traffic. 

The settings and configurations of all the Bluetooth sensors should be the consistent. These settings 
include the data format, device check-in frequency and the data upload frequency. Additionally, the 
system collecting and storing the device data should be configured to provide notifications and alerts in 
the event of offline or atypical device status. The system used in this study stores all timestamps 
internally in UTC, which is automatically converted on the server dashboard but must be manually 
converted if the raw data is utilized. 

Finally, there are additional data source options emerging for origin-destination data that utilize probe 
or Location Based Service data for traffic monitoring. The research team reviewed two data providers as 
potential resources for this project and found that the data quality was sufficient for long-term detours 
but both providers had a minimum match rate per 15-minute reporting period. This meant that for 
short, dynamic operations found in an ICM environment, periods with detours may report “0 trips” 
when there were actual observations that did not meet the minimum match rate. For a longer-term 
detour due to construction however, enough time periods may be aggregated to ensure that the total 
sampled detouring trips exceeds the minimum match rate. Further review of these sources is 
recommended once the technology has matured further as this method avoids the need for field devices 
and can be collected for historic periods. 

Planning for Integrated Corridor Management 

Planning methods exist for estimating the benefits of ICM deployments through the FHWA-developed 
TOPS-BC tool. This tool is built on a synthesis of operational benefits observed in Transportation System 
Management and Operations (TSMO) strategies. This tool is currently on version 4.0 and is targeted as a 
strategy screening tool and provides “order of magnitude” Benefit Cost Analysis estimates. FHWA 
recommends utilizing local or derived data in place of the default parameters to improve these 
estimates. One major limitation to utilizing TOPS-BC for the NCDOT ICM deployment was the scope and 
area type of the deployment compared to those found in the literature. NCDOT focused on a more 
rural/suburban corridor with limited modal options while previous ICM deployments studied were in 
urban areas often with multiple transit options in addition to detouring. 

This project also adapted an existing NCDOT analysis method used in the project prioritization process to 
compare estimated delays on primary and detour routes during ICM operation. This method, CALC, 
requires HCM inputs for the critical segment on the primary and detour route as well as estimated 
diversion and increases in detour capacity when signal retiming is part of the ICM activation. This 



 

 

analysis then uses incident rates and time of day traffic patterns to estimate the total delay with and 
without ICM operation to estimate the benefit of ICM. The inputs for diversion rates and capacity 
benefits from ICM-specific signal timing can be updated as observations provide better estimates to 
improve this method. The method does have limitations when long (in distance or time) detours are 
modeled and the critical segment is no longer able to represent the expected delays. 

There are additional options for estimating the benefits of ICM through network modeling or 
microsimulation of specific routes, though these methods are relatively high effort compared to the 
sketch-planning methods. Regional network models can be utilized with scenarios for lane closure types 
at locations along the ICM primary route to understand where traffic may naturally divert. Planned 
diversion under ICM will not always match this natural diversion due to the additional driver information 
and capacity improvements made on detouring routes but the network model outputs can be used to 
help select preferred detour routes. Once specific routes are established, microscopic modeling of the 
primary and detour routes can better estimate the traffic impacts of individual ICM activations and can 
also be used to develop signal timing plans for each activation. When modeled separately, the amount 
of diverted traffic is an input to the microsimulation and this should be updated when diversion rates 
are established through observation. 

Monitoring Integrated Corridor Management Deployments 

Once data sources are established, continuous monitoring of the ICM deployment is recommended for 
both evaluation purposes as well as to improve strategic decision-making. This project developed a live 
dashboard integrating data feeds from public and private sources presented in a compact set of maps 
and graphs. This dashboard framework can be adapted for additional deployments using detour route 
data including incident locations from TIMS as well as primary and detour routes in ClearGuide. These 
data sources can only be collected in real time and then recorded, so the dashboard cannot look back 
past the point at which it was originally created. 

NCDOT performs after action reviews of severe incidents including those in the I-85 ICM deployment, 
which may use the dashboard to supplement their review. An example of an incident review of 
dashboard data is provided in this report, though every incident may have unique features within the 
data. The probe data view may be utilized to identify latency in identifying or closing out the incident, 
while the Google Maps data is only shown during the period that the incident is active in TIMS. 

Review of ICM activations may also identify specific conditions under which the system is more or less 
beneficial, as it is possible that low-severity events may not need diversion when the detour route 
remains a longer travel time. Reviewing the probe data provides a view of the experienced travel time 
for drivers remaining on the primary route and those detouring. Likewise, it is possible that the planned 
detour routes are not consistently the fastest for diverted traffic, which can be seen in the Google Maps 
view. It is important to consider that these more dynamic recommended routes may not have sufficient 
capacity to handle the additional diverted traffic from the new traveler information compared to the 
drivers who are utilizing GPS-recommended detours. 

Finally, review of the activations along specific detour routes can be used to update signal timing 
strategies associated with each activation type. This process should be supplemented by the modeling 
used to develop the original timings, as the dashboard will show only the travel time along the detour 



 

 

route and not the increased delays to the minor streets that will be incurred by increasing green times 
to the detouring movements. 

Evaluation of Integrated Corridor Management 

The evaluation of the benefits and costs of an individual ICM deployment utilizes the combination of 
knowledge gained from each of the previous efforts. Data options selected for analysis may change as 
more cost effective or remote sources become available. This project developed an evaluation 
framework which captures delay, safety, environmental, administrative, and capital impacts of ICM 
deployment. For both benefits and costs, it is important to separate the incremental or specific impacts 
of the ICM deployment with the understanding that other projects and background traffic patterns 
continue to affect the corridor. 

Measuring the delay benefits of operational strategies is especially difficult compared to a traditional 
delay analysis that focuses on total before and after delay. ICM activations occur at random periods and 
with random impacts on the primary route due to the nature of incidents and therefore it is possible 
that worse incidents may occur by chance in the after period and yield a larger “total delay”. Instead, 
the recommended framework establishes an excess delay measure by which each incident can be 
individually evaluated compared to the recurring congestion level at that time of day and day of week. 
This excess delay can then be compared before and after the deployment by incident location and 
severity. 

Diversion is a key input to the planning and operation of ICM deployments. Incidents may naturally incur 
diversion through driver information provided by in-vehicle GPS, but planned detour routes during ICM 
are also displayed on the primary route. As most passive data sources currently utilized only collect 
travel times, diversion estimates are key to understanding the total impact to the transportation 
network. The sensor-based method introduced in this report compares device matches for primary and 
detour routes with and without incidents to identify diversion, and this can be extended to the emerging 
data sources once they are capable of reporting rates at an appropriate resolution. 

Finally, the analysis presented is focused on ICM deployments with a fixed set of strategies. Research 
and pilot deployments are underway utilizing a dynamic ICM system capable of determining a strategy 
for each specific incident or traffic condition. This analysis framework is recommended for the I-85 
deployment and others with fixed strategies; however it would need to be augmented with the strategy 
selection algorithm to account for a dynamic system. 
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1. INTRODUCTION 
This document provides guidance on the use of the ICM dashboard. Integrated Corridor 
Management (ICM) dashboard is a web-based data visualization tool that visually tracks, analyzes, 
and displays traffic incident data at a section of the I-85 corridor in North Carolina. It is a web-
based platform developed using JavaScript as the primary language (Node.js interpreter) and 
MySQL database. The ICM dashboard is developed as part of NCDOT research project No. 2019-
30 “Post-Implementation Evaluation of Integrated Corridor Management (ICM) in North 
Carolina”. All data used in the dashboard are documented in a NCDOT Project (No. 2019-30) 
final report. The ICM Dashboard is hosted at ITRE’s DataLab on secure state-networked servers. 

The ICM Dashboard provides real-time information on corridor performance to assist ICM system 
operators manage both travel demand and network demand in normal and abnormal conditions. 
Although intentionally developed with NCDOT’s first ICM deployment in mind, the tool can be 
made available for uses with any ICM corridor.  This dashboard can be useful for transportation 
operators to visually identify all the routes and the ability to accept, adjust, and deploy advisory 
and control strategies which can affect the entire ICM system. In addition, ICM system operators 
can use this tool to take action before corridor performance degrades and, in cases where 
degradation has already occurred, take fast action to promptly restore normal conditions. 

1.1 Disclaimer 
The ICM Dashboard is not a commercial software product and it relies exclusively on the findings 
of the NCDOT project No. 2019-30 “Post-Implementation Evaluation of Integrated Corridor 
Management (ICM) in North Carolina”.  This ICM tool will directly assist NCDOT to measure 
benefits and provide guidance for future implementation of ICM elsewhere in the state. The 
contents of this document reflect the views of the authors and are not necessarily the views of the 
Institute for Transportation Research and Education or North Carolina State University. The 
authors are responsible for the facts and the accuracy of the data presented herein. The contents do 
not necessarily reflect the official views or policies of the North Carolina Department of 
Transportation or the Federal Highway Administration at the time of publication. This user guide 
does not constitute a standard, specification, or regulation. 
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2. ICM Dashboard Navigation 
To use the tool, the user needs to login to the ICM portal at (http://icm.itredatalab.org/) using 
credential provided by the team or NCDOT ICM team This will navigate to the ICM Dashboard 
shown in Figure 1.  

 
Figure 1 – ICM Dashboard  

2.1 Banner Links 
Two options are provided at the top of the website in the red banner.  The “Guide Me Through 
This Page!” tab helps explain what each section of the webpage does. The content will vary based 
on the path the user is located. The “Sign Out” tab will log the user out of the ICM dashboard. 

 

 

http://icm.itredatalab.org/
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The main steps involved in the ICM Dashboard are shown in Figure 2. The user selects an incident 
date from the calendar, and then different incidents corresponding to the selected date are 
populated in the dropdown list. The user can further select an incident from dropdown lists to 
generate the TIMS incident summary, Google API routes & travel times, and Probe Data routes & 
travel times. The detailed input and output steps are described in the following sections. 

 

 

 

 

 

 

 

 

Figure 2 – ICM Dashboard – Navigating to Particular Incident Events 

 

Note:  Users must follow the analysis steps in the sequential order as shown above. The following 
sections provide details of each step. 

2.2 Input 
This section focuses on the step-by-step input process of the ICM dashboard. It starts with incident 
date selection from the calendar, followed by selecting a unique incident on the selected date from 
dropdown lists. Each of these components is described below.  

2.2.1 Calendar Selection 
As shown in Figure 3, all traffic incident dates are formatted as bold and black color in the calendar 
while dates with no incidents are transparen. Users can select one incident date at a time by clicking 
on a day in the calendar. Upon successful selection of date, the selected date background is filled 

• Calendar Selection 

Input 

• Incident Selection 

Input 
• TIMS Incident summary 
• Google API routes & travel times 
• IPEMS routes & travel times 

 

Output 
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with red color. A warning message “alert: No incident reported on this date” will appear if the user 
selects a non-incident date in the calendar. 

 

Figure 3 Calendar selection – ICM Dashboard 

 

2.2.2 Incident Selection 
For the user-selected incident date in the calendar selection step, the dropdown list is populated 
with a unique incident ID (TIMSID), start time, end time, location, and direction of the incident 
(Figure 4). Users can select an incident date at a time to visualize it.  

 

Figure 4 Incident Selection 
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2.3 Output 
This section focuses on the output generated in the ICM dashboard for the selected. The output 
provides a TIMS incident summary, Google API routes along with the associated travel times, and 
Probe Data routes with associated travel times. Each output components are discussed below. 

2.3.1 Incident Summary 
For each selected incident a summary table provides key information such as severity, action, 
event, number of lanes closed, and total number of lanes available (Figure 5).  

 

Figure 5 – Incident Summary Table for a Sample Selected Incident 

 

2.3.2 Google Maps API Routes and Travel Times 
 

The generated Google map displays all detour routes for the selected as shown in Figure 6. If 
multiple detour routes are recommended by Google Maps, each route is marked with a different 
color. The start and end locations of each detour route are displayed using green and orange color 
markers, respectively. The chart displays the travel time taken by each detour route between the 
start time and end time of the selected incident. Each route is marked with a different color.  
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Figure 6 – Google Maps API Routes and Travel Times 

2.3.3 Probe Data Routes and Travel Times 
 

NCDOT’s current Probe Data provider is HERE, which provides routing and travel time data 
through the ClearGuide platform. This data is also collected and stored in the ICM dashboard for 
visualizing the specific planned detour routes. The map displays the primary and the detour routes 
for the selected incident ( refer to Figure 7 for illustration of an example). Each route is marked 
with a different color. The start and end locations of each detour route are displayed using green 
and orange color markers, respectively.  

 

  

Figure 7 – IPEMS Routes and Travel Times 

The chart displays the reported travel time for the primary and the detour routes during the selected 
incident. Each route is marked with a different color fo easy distinction. The left and right vertical 
lines (marked with grey color) refers to incident start time and end time, respectively.  
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Appendix B 



Bluetooth Case Studies 
To test the robustness of the developed methods for outlier detection both for the main and detour routes, 
and estimation of detour percentage, the team selected two scenarios where both incident and non-
incident days were available. Selection of routes to include incident and non-incident days were deemed 
crucial for testing of the outlier detection algorithms and analysis of the detour rate to ensure they work 
under both incident and non-incident scenarios. Several sites were selected with different ramp and 
signalized intersections density.  
 
Travel Time Case Studies 
 
Case Study #1 
The first case study site is located on the westside of the facility and is related to the one of developed 
scenarios for ICM. Following figure shows the geographical location of the scenario, Bluetooth sensor 
locations, and the planned detour routes. The red-dotted route represents the primary route on which an 
incident can happen. There are multiple speed limits along the detour route and three signalized 
intersections. The primary route starts from exit 10A on the westside and ends at exit 13 on the eastside. 
The detour route for this scenario is mainly along the US 74 and gets back on the interstate at exit 13 
(Edgewood rd). 
 
 
 

 
Figure 1: Location of first case study along with Bluetooth sensors 

Two days representing an incident day (July 18, 2020) and a non-incident day (July 19, 2020) were selected 
for application of the developed algorithms. The travel times for July 19th, 2020 are shown in Figure 2. 
Figure 2a shows the travel times on the primary route (freeway) and Figure 2b shows the travel times on 
the alternative route. Visual observations of the Figure 2a show normal operation on the freeway where 
travel times are clustered around the free flow travel time with occasional high/low travel times that are 
clearly not representative of the conditions of the traffic stream. These travel times, colored orange, are 
outlier trips detected by the IQR4 algorithm. Observations of the figure reveals that the algorithm is able to 



effectively remove the outliers during a non-incident period. Similarly, Figure 2b shows the travel time 
on the alternative route (US 74) for the same day. The travel times on the alternative route, however, is 
scattered and does not portray any meaningful cluster. This is expected due to the presence of multiple 
signalized intersections along the route, different speed limits, and friction from businesses along the 
corridor. Observations of the figure reveals that the fixed threshold algorithm is able to detect obvious 
outliers and flag them as such. The top and bottom lines in Figure 2b represent the ceiling and floor values. 
Any travel times above the ceiling and below the floor lines are flagged as outliers and excluded from the 
analysis.  

 
Figure 2: Individual travel time observations for the primary and alternative route for a non-incident day 

 
Travel time observations for July 18, 2020 is shown by Figure 3. The abrupt increase in travel time 
during the early morning hours of the day is caused by an accident occurring on the freeway and closing 
the shoulder and one of the lanes. Figure 3a shows that the algorithms is able to navigate the abrupt 
increase in travel time around the accident time and correctly flag those travel times as valid observations. 
This is a testament to the robustness of the IQR4 outlier detection algorithm for scenarios where incidents 
are present on the primary route.  
Figure 3b shows slight increase in travel times and number of observations on the alternative route. The 
incident has caused a relatively small surge of both the travel times and volume on the alternative route as 
drivers take the detour to prevent the longer travel times. Furthermore, observations of the figure reveal 
accurate identification of outliers on the detour route via the fixed threshold outlier detection algorithm.   



 
Figure 3: Individual travel time observations for the primary and detour route for an incident day 

 
Case Study #2 
The second detour route is about 2.1 miles long with a speed limit of 45 mph. There are 10 signalized 
intersections along the route. The first signalized intersection along the alternative route is located at the 
off ramp of I-85 (i.e., the start of the detour), and the last intersection is located at the on ramp to I-85 
(i.e., the end of the detour). Using the fixed threshold filter introduced earlier, the lower and upper bounds 
for the travel time were calculated to be 2.3 and 16.38 minutes, respectively. The following figures show 
the thresholds for the travel times of the matched records from April 12th, 2020 and April 13th, 2020. 
Note that a road closure with detour happened on the nearby main route on April 13th (more discussion 
on the incident will be given in the following paragraphs). 
 

  
Figure 4: Location of second case study  

 
 
 



 
Figure 5: Scatter plot of travel times for the second case study route for April 12th (a) main route travel times (b) detour route 
travel times 

 
  
 

 
Figure 6: Scatter plot of travel times for the second case study route for April 13th (a) main route travel times (b) detour route 
travel times 

Visual observations of Figure 5 and Figure 6 indicate that both of the developed algorithms are 
capable of detecting outlier travel time observations on the main and detour routes during 
incident and non-incident periods. Comparison of Figure 5a and Figure 6a shows that the latter 
experienced significant jump in travel times on the early hours of April 13th due to road closure. 
The green dots represent valid travel times in  Figure 6a and close observation of this figure 
shows adaptiveness of the outlier detection algorithms. The outlier detection algorithm picks up 
incident impacted travel times immediately and flags them as valid travel times. Similarly, 
Figure 5b and Figure 6b show application of the fixed threshold outlier detection algorithm. 
The latter route experiences significant number of travel times, some of which are caused by the 
road closure on the main route. The algorithms show reasonable performance both during non-
incident and incident period on the detour routes as well. As such, it can be claimed that the fixed 
threshold filter is reasonably filtering the outliers. The fixed threshold filter also offers a more reasonable 
fixed lower and upper bounds than those used by the BlueMac (between 0 and 60 minutes). Therefore, it 
is a promising way to filter out outliers on detour routes.  
 
 



 
Diversion Rate Estimation 
The team selected several events that caused congestion on I-85 and estimated the trips on US 74 that 
were detoured from I-85 with the goal of identifying the diversion rate caused by the presence of incident 
on the primary route. 
 
Case Study #3 
Nov 17th, 2020 was selected to evaluate the diversion rate since there was an accident that happened on 
this day. The accident started at around 11 am and got cleared at around 2 PM. This accident caused 
congestions to the westbound traffic on I-85. Figure 7 shows the main route in red and a suggested 
detour route in blue. 

  
Figure 7: Primary and detour routes for an event that caused congestion on the main route on Nov 17th 

 
The team was interested to estimate the detour trips caused by this accident on the detour route as shown 
by Figure 7. Due to the lack of operational Bluetooth sensors in the area during the incident period, the 
team was not able to estimate the diversion rate for the main and detour routes shown in Figure 7. 
Instead, the team estimated the detour trips between the two nearest available sensors (circled in red) 
shown in Figure 8. 
 

 
Figure 8: Sensor selected to estimate the detour trips 

     
Figure 9 shows the number of trips on the detour route aggregated at 15-minutes intervals for the 
incident day along with two non-incident days. Comparison of parts (a) and (c) of the figure to part (b) 
show that there are significant number of trips during the time when the accident occurred (highlighted by 



the rectangle). The average number of trips on the detour route for each time epoch is around 2 trips for 
the non-incident days, while that number is around 16 trips for the incident period – showing an eight fold 
increase in the number vehicles taking the detour route. The estimated travel times on the detour route is 
also close to what Google Maps provided, which suggests that the trips are on the detour route for the 
purpose of averting the incident location (i.e., not for other purposes such as refueling and visit places 
along the route).  
 

 
Figure 9: Number of trips detected between sensors (a) the day before the incident (11/16/2020), (b) incident day (11/17/2020), 
and (c) the day after the incident (11/18/2020) 

 
Case Study #4 
 
Figure 11 presents another case where a road obstruction (road closed with detour) happened on the 
main route. The incident was present from 5-10 AM on April 13th, 2020.   
 



 
Figure 10: Road closure with detour on April 13th, 2020 

 
Unfortunately, the information about the posted detour route for the road closure was unavailable to the 
research team. Based on the available sensors, we created one main route and two detour routes, which 
are shown in Figure 12. 
 
 

 
Figure 11: Main route and 2 detour routes for the road closure on April 13th, 2020. The main route is marked in blue. The first 
detour is marked in yellow and the 2nd detour is marked in black. The section of route closure is highlighted 

Figure 13 and Figure 14 show the number of matched records and their average speed on the main and 
two detour routes every 15 minutes for the day before the incident, the incident day, and the day after the 
incident. Part (a) and (b) of the figures are the statistics for the main route and part (c) and (d) are the 
statistics for the detour routes. 
 
The impact of the road closure on the main route is apparent. For example, trips are detected on the main 
route on April 12th and April 14th while there are almost no trips detected during the route closure on 
April 13th.  The trips detected from 5 to 10 AM on April 14th are higher than those on April 12th because 
the former includes Monday morning rush hour and the latter is a Sunday morning. For the same reason, 
if the road closure did not happen on April 13th, then the trips detected from 5 to 10 AM on this date is 
expected to be higher than those on April 12th.  



 

 
Figure 12: Number of matched records and their travel times for the main and the 1st detour route 

 
The impact of the road closure on the two detour routes is also apparent. For example, we can observe 
that the number of detected trips from 5 to 10 AM on April 13th is significantly higher than these of the 
other two days. This surge in the number of trips on the detour route could only be caused by the 
diversion of the mainline traffic. In contrast, the numbers of detected trips before 5 AM and after 10 AM 
on April 13th are similar to these on April 12th and 14th.  



 

 
Figure 13: Number of matched records and their travel times for the main and the 2nd detour route 

 
Summary 
This appendix investigated (a) robustness of the developed algorithms for outlier travel time detection on 
the main and detour routes and (b) feasibility of using Bluetooth sensors as a mean to estimate the 
freeway diversion rate on the ICM facilities. Application of the developed algorithms to multiple 
scenarios with different length, signal density, speed limit, incident, and non-incident periods revealed 
robustness of the methodology for generation of travel times. Similarly, the diversion rate analysis 
showed that using Bluetooth sensors is a viable medium to obtain such estimates. In summary, Bluetooth 
sensors provide promising datasets which enable ICM project stakeholders to conduct travel time, 
diversion rate, and origin-destination analyses.   
 



 

 

 

 

 

Appendix C 



APPENDIX 3: Introduction to User Interface of Planning tool 
 

This appendix describes the interface of the planning tool used to calculate the total expected vehicle 
hours traveled (VHT) savings for detours during incidents in freeways.  

The Excel tool contains the following 2 sheets: 

1. Input sheet 
2. Result sheet 

 
Input Sheet: Figure 1 shows the input sheet in the planning tool. The user can enter the number of 
detours for a freeway segment using the input macro available. Once the user has entered the numbers 
of detours, the tool will populate the “Facility” column with the mainline and detour segments. In the 
next step, the user has to enter the necessary inputs such as the Number of lanes, Facility type, Median 
type, Area type, Terrain type, Facility length, speed limit, Intersection type, AADT, Peaking type and the 
Functional class for the corresponding facilities. The lane width and crash to incident ratio will have 12 
and 4.9 respectively as the default value which the user can change. 
  

 

Figure 1 Input Sheet in Planning tool 

Result sheet: Once the input information has been entered, the result sheet will calculate the total VHT 
savings and the total expected savings for each detour. The figure A3-3 contains the tables containing 
the total expected savings and total VHT savings. The value next to the incident severity in the total VHT 
savings table shows the total VHT savings for each incident severity type in the freeway segment. The 
value next to the incident severity in the total expected savings table shows the expected savings for 
each incident severity type accounting for the probability of the incident severity type and time of day of 
incident. The VHT savings are higher when more lanes are closed in the freeway causing more traffic to 
be diverted to move to the detour. However, the expected savings won't follow a similar trend as the 
probability of an incident happening where 2 lanes are closed is lower than that of a shoulder being 
closed. Hence, the expected savings table will give the user an idea of savings that can be expected by 
using a detour route during an incident in a freeway segment. In the result sheet, the user can change 
the percentage of volume diverted detours for each incident severity type and the percentage increase 
in capacity for signalized intersections. Figures 2 and 3 show the result sheet in the planning tool. 



 

Figure 2 Result sheet in Planning tool 

 

Figure 3 Result sheet in Planning tool 
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